How to find the equation of parabola and how to solve the equation of it:

Consider the equation of parabola:
    \(y = \frac{1}{3}{x^2}\)                                                                                                       ...... (1)
The vertex of the given parabola is at the origin.
Axis of symmetry will be \(x = 0\) and the parabola opens Upwards.
Compute some points on the parabola.
Substitute\(x = 3\),
           \(\begin{array}{c}y = \frac{1}{3} \times {\left( 3 \right)^2}\\ = 3\end{array}\)
Substitute\(x = 1.5\),
           \(\begin{array}{c}y = \frac{1}{3} \times {\left( {1.5} \right)^2}\\ = 0.75\end{array}\)
Substitute\(x = 6\),
           \(\begin{array}{c}y = \frac{1}{3} \times {\left( 6 \right)^2}\\ = 12\end{array}\)
Therefore, some points on the given parabola are:
           \(\left( {3,3} \right),\left( {1.5,0.75} \right),\left( {6,12} \right),\left( { - 3,3} \right),\left( { - 1.5,0.75} \right),\left( { - 6,12} \right)\)
Plot all these points on a graph paper and join them.


The graph of the parabola (1)  \(y = \frac{1}{3}{x^2}\)is as follows:

     

Post a Comment

Previous Post Next Post