How to find the distance between two points and the midpoint of these two points?

Use the standard formula to find the distance between two points\(\left( {{x_1},{y_1}} \right){\rm{ and }}\left( {{x_2},{y_2}} \right)\),
           \(d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \)

Here, d is the distance between points,

The points are \(A = \left( {7, - 8} \right){\rm{ and }}B = \left( {0, - 3} \right)\)
\(\begin{array}{c}d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \\ = \sqrt {{{\left( {0 - 7} \right)}^2} + {{\left( { - 3 - \left( { - 8} \right)} \right)}^2}} \\ = \sqrt {49 + {{\left( { - 3 + 8} \right)}^2}} \end{array}\)
\(\begin{array}{c} = \sqrt {49 + {5^2}} \\ = \sqrt {49 + 25} \\ = \sqrt {74} \end{array}\)

Use the standard formula to find the midpoint as,
\(\left( {x,y} \right) = \left( {\frac{{{x_1} + {x_2}}}{2},\frac{{{y_1} + {y_2}}}{2}} \right)\)
The midpoint of the above two points will be,
\(\begin{array}{c}\left( {x,y} \right) = \left( {\frac{{7 + 0}}{2},\frac{{ - 8 + \left( { - 3} \right)}}{2}} \right)\\ = \left( {\frac{7}{2},\frac{{ - 11}}{2}} \right)\end{array}\)

Post a Comment

Previous Post Next Post